DO THE COMPOUNDS PhCH₂Y GIVE GEMINAL DIANIONS ON ADDITION OF TWO EQUIVALENTS OF STRONG BASE?

Patrick J. Crowley,^a Mark R. Leach,^b Otto Meth-Cohn,^{C*} and Basil J Wakefield^b

- a. ICI Plc, Plant Protection Division, Jealott's Hill Research Station, Bracknell, Berks RG12 6EY.
- b. The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT
- c. National Chemical Research Laboratory, Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001, South Africa.

Abstract: Examples of the title reaction are shown not to yield geminal dianions as believed but rather monoanions complexed with a second molecule of the base.

A number of true examples of geminal dilithio- compounds have been demonstrated to exist by NMR or X-ray data. $^{
m l}$ In the family of compounds of the type PhCH₂Y it has been assumed that similar dilithio- species, PhCLi₂Y, $(Y = CN, {}^{2}SOPh, {}^{2}SO_{2}Ph, {}^{2-4}SO_{2}NMe^{2} and NO_{2}{}^{5})$ are formed and extensive chemical, infrared and isotopic data has been marshalled to prove their involvement.² Similar dilithio species have been proposed in the ferrocene (Fc) series FcCH₂Y (Y = CN, ⁶ POPh₂, ⁷⁻⁸ PO(OEt) 2^8 and SO₂Ph⁹) and the whole matter has been reviewed. 10 During work on reactions of such geminal dianions we have investigated the ¹³C nmr spectra of two typical examples of such systems derived from PhCH2CN and PhCH2PO(OEt)2 which demonstrate unequivocally that although the apparent geminal dianions react appropriately they are in fact mono-anions complexed with a second molecule of base. The geminal dianion structure of all such systems in solution should therefore be viewed with caution in the absence of ¹³C nmr data. We term such systems QUADAC's (Quasi Dianion Complexes).¹¹

The 13 C nmr data of PhCH₂CN and PhCH₂PO(OEt)₂ in tetrahydrofuran and their derived QUADAC's are shown in Scheme 1 together with the difference in chemical shifts on addition of two equivalents of the base (lithium bis(trimethylsily1) amide (LBTMSA)). The methylene triplet in PhCH₂CN is converted into a doublet not a singlet on base treatment. Interestingly when one equivalent of base is added the chemical shifts are almost identical to

those of the QUADAC. Addition of a second equivalent to this solution has only one significant effect - the appearance of an absorption at 6.04 ppm characteristic of LBTMSA, accompanied by a colour change in the solution.

<u>7</u>

R ¹	н		H		Li	
R ²	н		Li		Li	
δCα	48.5	t	33.8	đ	50.5	bs
δCl	145.4	s	156.5	s	157.5	s

Similar effects with added phosphorus coupling are observed with the phosphonate (4). These data are in contrast to those reported by Gais et al.^{1a} recently for the sulphone (7) which clearly shows mono- and dianion formation. The C-P coupling of the phosphonate increases from 138.8 to 228.2 Hz on lithiation (Scheme 1), clearly indicative of an sp^3 to sp^2 transformation at carbon as noted by Bottin-Strzalko et al.¹²

The chemical data suggestive of a geminal dianion (e.g. ready and high yielding dialkylation on addition of an alkyl halide¹⁰) is accounted for by a sequential metallation and reaction. Deuteriation studies in which Kaiser and Hauser² observed incorporation of 1.60-1.78 deuteriums per molecule when PhCH₂CN was treated with 2.3 equivalents of butyl-lithium in tetrahydro-furan followed by a D_2O quench also support a sequential process as shown in Scheme 2, involving a rapid intra-aggregate lithiation. Such lithiations in

the presence of water are known.¹³ These results are in contrast to the almost quantitative deuteriation of the dilithio- species (7, $R^1 = R^2 = Li$).^{1a}

We suggest that the structure of the QUADAC's could be reasonably viewed as, for example, (8). This structure would satisfy (a) the downfield shift of C_{α} due to ketenimine character on lithiation of PhCH₂CN but otherwise little change in the ¹³C nmr on addition of a second equivalent of base. (b) The change in colour on addition of the second equivalent of base and infrared (1 equiv. base - v_{max} 2160 and 2130 cm⁻¹; 2 equivs. base - v_{max} 1905 cm⁻¹) on treatment of PhCH₂CN with base.² The mono-anion could also be

a related bridged dimer (e.g. 9), a common structural type in the organolithium field. le

The considerable current interest in both the structure and synthetic application^{1C, 5, 14} of apparent geminal dilithiated compounds demands a careful reappraisal of much of the existing data.

References

- 1. E.g. (a) from PhSO₂CH₂SiMe3 J. Vollhardt, H.-J. Gais, and K.L. Lukas, <u>Angew. Chem. Int. Ed. Eng.</u>, 1985, <u>24</u>, 696; (b) from PhCH₂CHCH₂ - J. Klein and A. Medlik-Balan, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1975, 877; (c) from PhSO₂CH₂CHCH₂ - J. Vollhardt, H.-J. Gais, and K.L. Lukas, <u>Angew.</u> <u>Chem. Int. Ed. Eng.</u>, 1985, <u>24</u>, 610; (d) CH₂Li₂ - J.A. Gurak, J.W. Chinn, R.J. Lagow, H. Steinfink, and C.S. Yannoni, <u>Inorg. CHem</u>., 1984, <u>23</u>, 3717; (e) review with X-ray data of other systems - <u>Adv.</u> <u>Organomet. Chem.</u>, 1984, <u>24</u>. 354.
- E.M. Kaiser, L.G. Solter, R.A. Schwartz, R.D. Beard, and C.R. Hauser, J. Am. Chem. Soc., 1971, 93, 4237.
- 3. E.M. Kaiser and C.H. Hauser, Tetrahedron Lett., 1967, 3341.
- V. Pascali, N. Tangari and A. Umani-Rouchi, <u>J. Chem. Soc., Perkin</u> Trans. 1, 1973, 1166.
- F. Lehr, J. Bonnermann, and D. Seebach, <u>Helv. Chim. Acta</u>, 1979 <u>62</u>, 2258.
- 6. G. Marr and J. Ronayne, J. Organomet. Chem., 1973, 47, 417.
- G. Marr, B.J. Wakefield, and T.M. White, <u>J. Organomet. Chem</u>., 1975, <u>88</u>, 357.
- 8. T.M. White, Ph.D. Thesis, Salford University, 1975.
- 9. J.B. Evans and G. Marr, J. Chem. Soc., Perkin Trans. 1, 1972, 2502.
- 10. M. Kaiser, J.D. Petty, and L.A. Knutson, Synthesis, 1977, 509.
- 11. Brenner has also proposed that PhCH₂CN gives only the monolithio derivative with two equivalents of butyl-lithium: S. Brenner and M. Bovete, <u>Tetrahedron</u>, 1975, 153; see also <u>ibid</u>., <u>Tetrahedron Lett</u>., 1974, 1377.
- T. Bottin-Strzalko, J. Seyden-Penne, M.-J. Povet, and M.-P. Simonniu, J. Org. Chem., 1978, 43, 4346.
- 13. R. Taylor, Tetrahedron Lett., 1975, 435.
- 14. J.J. Eisch, S.K. Dua, and M. Behrooz, <u>J. Org. Chem</u>., 1985, <u>50</u>, 3674. (Received in UK 15 April 1986)